Causal Inference for Complex Longitudinal Data: the continuous case
نویسندگان
چکیده
We extend Robins’ theory of causal inference for complex longitudinal data to the case of continuously varying as opposed to discrete covariates and treatments. In particular we establish versions of the key results of the discrete theory: the g-computation formula and a collection of powerful characterizations of the g-null hypothesis of no treatment effect. This is accomplished under natural continuity hypotheses concerning the conditional distributions of the outcome variable and of the covariates given the past. We also establish in a precise mathematical sense the harmlessness of the assumptions concerning counterfactual variables.
منابع مشابه
Causal Inference for Complex Longitudinal Data: The Continuous Time g-Computation Formula
I write out and discuss how one might try to prove the continuous time g-computation formula, in the simplest possible case: treatments (labelled a, for actions) and covariates (l: longitudinal data) form together a bivariate counting process.
متن کاملCausal Inference for Complex Longitudinal Data : the continuous case . By Richard
We extend Robins’ theory of causal inference for complex longitudinal data to the case of continuously varying as opposed to discrete covariates and treatments. In particular we establish versions of the key results of the discrete theory: the g-computation formula and a collection of powerful characterizations of the g-null hypothesis of no treatment effect. This is accomplished under natural ...
متن کاملMarginal Structural Models versus Structural Nested Models as Tools for Causal Inference
Robins (1993, 1994, 1997, 1998ab) has developed a set of causal or counterfactual models, the structural nested models (SNMs). This paper describes an alternative new class of causal modelsthe (non-nested) marginal structural models (MSMs). We will then describe a class of semiparametric estimators for the parameters of these new models under a sequential randomization (i.e., ignorability) assu...
متن کاملA Logic for Causal Inference in Time Series with Discrete and Continuous Variables
Many applications of causal inference, such as finding the relationship between stock prices and news reports, involve both discrete and continuous variables observed over time. Inference with these complex sets of temporal data, though, has remained difficult and required a number of simplifications. We show that recent approaches for inferring temporal relationships (represented as logical fo...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000